Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(24)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153147

RESUMO

A first implementation of analytic gradients for spinor-based relativistic equation-of-motion coupled-cluster singles and doubles method using an exact two-component Hamiltonian augmented with atomic mean-field spin-orbit integrals is reported. To demonstrate its applicability, we present calculations of equilibrium structures and harmonic vibrational frequencies for the electronic ground and excited states of the radium mono-amide molecule (RaNH2) and the radium mono-methoxide molecule (RaOCH3). Spin-orbit coupling is shown to quench Jahn-Teller effects in the first excited state of RaOCH3, resulting in a C3v equilibrium structure. The calculations also show that the radium atoms in these molecules serve as efficient optical cycling centers.

2.
J Chem Phys ; 158(13): 134304, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031139

RESUMO

Characterization of the inner-shell decay processes in molecules containing heavy elements is key to understanding x-ray damage of molecules and materials and for medical applications with Auger-electron-emitting radionuclides. The 1s hole states of heavy atoms can be produced by absorption of tunable x rays and the resulting vacancy decays characterized by recording emitted photons, electrons, and ions. The 1s hole states in heavy elements have large x-ray fluorescence yields that transfer the hole to intermediate electron shells that then decay by sequential Auger-electron transitions that increase the ion's charge state until the final state is reached. In molecules, the charge is spread across the atomic sites, resulting in dissociation to energetic atomic ions. We have used x-ray/ion coincidence spectroscopy to measure charge states and energies of Iq+ and Brq'+ atomic ions following 1s ionization at the I and Br K-edges of IBr. We present the charge states and kinetic energies of the two correlated fragment ions associated with core-excited states produced during the various steps of the cascades. To understand the dynamics leading to the ion data, we develop a computational model that combines Monte-Carlo/Molecular-Dynamics (MC/MD) simulations with a classical over-the-barrier model to track inner-shell cascades and redistribution of electrons in valence orbitals and nuclear motion of fragments.

3.
Phys Chem Chem Phys ; 24(22): 13587-13596, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616685

RESUMO

A benchmark computational study of K-edge core-ionization energies of third-row elements using relativistic delta-coupled-cluster (ΔCC) methods and a revised core-valence separation (CVS) scheme is reported. High-level relativistic (HLR) corrections beyond the spin-free exact two-component theory in its one-electron variant (SFX2C-1e), including the contributions from two-electron picture-change effects, spin-orbit coupling, the Breit term, and quantum electrodynamics effects, have been taken into account and demonstrated to play an important role. Relativistic ΔCC calculations are shown to provide accurate results for core-ionization energies of third-row elements. The SFX2C-1e-CVS-ΔCC results augmented with HLR corrections show a maximum deviation of less than 0.5 eV with respect to experimental values.

4.
J Chem Phys ; 156(15): 151101, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35459315

RESUMO

Development of analytic gradients for relativistic coupled-cluster singles and doubles augmented with a non-iterative triples [CCSD(T)] method using an all-electron exact two-component Hamiltonian with atomic mean-field spin-orbit integrals (X2CAMF) is reported. This enables efficient CC geometry optimizations with spin-orbit coupling included in orbitals. The applicability of the implementation is demonstrated using benchmark X2CAMF-CCSD(T) calculations of equilibrium structures and harmonic vibrational frequencies for methyl halides, CH3X (X = Br, I, and At), as well as calculations of rotational constants and infrared spectrum for RaSH+, a radioactive molecular ion of interest to spectroscopic study.

5.
J Chem Phys ; 154(6): 064110, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33588557

RESUMO

A formulation of analytic energy first derivatives for the coupled-cluster singles and doubles augmented with noniterative triples [CCSD(T)] method with spin-orbit coupling included at the orbital level and an implementation for evaluation of first-order properties are reported. The standard density-matrix formulation for analytic CC gradient theory adapted to complex algebra has been used. The orbital-relaxation contributions from frozen core, occupied, virtual, and frozen virtual orbitals to analytic spin-orbit CCSD(T) gradients are fully taken into account and treated efficiently, which is of importance to calculations of heavy elements. Benchmark calculations of first-order properties including dipole moments and electric-field gradients using the corresponding exact two-component property integrals are presented for heavy-element containing molecules to demonstrate the applicability and usefulness of the present analytic scheme.

6.
J Healthc Eng ; 2020: 8887340, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676176

RESUMO

Since fall is happening with increasing frequency, it has been a major public health problem in an aging society. There are considerable demands to distinguish fall down events of seniors with the characteristics of accurate detection and real-time alarm. However, some daily activities are erroneously signaled as falls and there are too many false alarms in actual application. In order to resolve this problem, this paper designs and implements a comprehensive fall detection framework on the basis of inertial posture sensors and surveillance cameras. In the proposed system framework, data sources representing behavior characteristics to indicate potential fall are derived from wearable triaxial accelerometers and monitoring videos of surveillance cameras. Moreover, the NB-IoT based communication mode is adopted to transmit wearable sensory data to the Internet for subsequent analysis. Furthermore, a Gradient Boosting Decision Tree (GBDT) classifier-based fall detection algorithm (GBDT-FD in short) with comprehensive data fusion of posture sensor and human video skeleton is proposed to improve detection accuracy. Experimental results verify the good performance of the proposed GBDT-FD algorithm compared to six kinds of existing fall detection algorithms, including SVM-based fall detection, NN-based fall detection, etc. Finally, we implement the proposed integrated systems including wearable posture sensors and monitoring software on the Cloud Server.


Assuntos
Acidentes por Quedas , Algoritmos , Monitorização Ambulatorial/instrumentação , Monitorização Ambulatorial/métodos , Postura , Humanos , Máquina de Vetores de Suporte , Gravação de Videoteipe
7.
J Phys Chem A ; 124(22): 4413-4426, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32255349

RESUMO

Benchmark scalar-relativistic delta-coupled-cluster calculations of hetero-site double core ionization energies of small molecules containing second-row elements are reported. The present study has focused on the high-spin triplet components of two-site double core-ionized states, which are single reference in character and consistent with the use of standard coupled-cluster methods. Contributions to computed double core ionization energies from electron-correlation and basis-set effects as well as corrections to the core-valence separation approximation have been analyzed. On the basis of systematic convergence of computational results with respect to these effects, delta-coupled-cluster calculations have been shown to be capable of providing accurate double core ionization energies with remaining errors estimated to be below 0.3 eV, and thus they are recommended for use to facilitate experimental studies of two-site double core-ionized states that are involved in X-ray pump/X-ray probe studies of electronic and molecular dynamics following inner shell ionization or excitation.

8.
J Chem Theory Comput ; 15(9): 4945-4955, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31365823

RESUMO

A thorough study of the performance of delta-coupled-cluster (ΔCC) methods for calculations of core-ionization energies for elements of the first long row of the periodic table is reported. Inspired by the core-valence separation (CVS) scheme in response theories, a simple CVS scheme of excluding the vacant core orbital from the CC treatment has been adopted to solve the convergence problem of the CC equations for core-ionized states. Dynamic correlation effects have been shown to make important contributions to the computed core-ionization energies, especially to chemical shifts of these quantities. The maximum absolute error (MaxAE) and standard deviation (SD) of delta-Hartree-Fock results for chemical shifts of core-ionization energies with respect to the corresponding experimental values amount to more than 1.7 and 0.6 eV, respectively. In contrast, the inclusion of electron correlation in ΔCC singles and doubles augmented with a noniterative triples correction [ΔCCSD(T)] method significantly reduces the corresponding deviations to around 0.3 and 0.1 eV. With the consideration of basis set effects and the corrections to the CVS approximation, ΔCCSD(T) has been shown to provide highly accurate results for absolute values of core-ionization energies, with a MaxAE of 0.22 eV and SD of 0.13 eV. To further demonstrate the usefulness of ΔCCSD(T), calculations of carbon K-edge ionization energies of ethyl trifluoroacetate, a molecule of significant interest to the study of X-ray spectroscopy and dynamics, are reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...